Math 53 Discussion

Practice Problems: Midterm 1 Review

1) Find the maximum and minimum of $f(x, y, z)=2 x+2 y+z$ subject to $x^{2}+y^{2}+z^{2}=9$.
2) Find the points on the surface $x y^{2} z^{3}=2$ closest to the origin.
3) Sketch $r(\theta)=\sin \theta / \theta$.
4) Use the Chain Rule to find $d u / d p$ where $u=x^{2} y^{3}, x=p+3 p^{2}, y=p e^{p}$.
5) Find the directional derivative of $f=x^{2} e^{-y}$ in the direction towards $(2,-3)$ from the point $(-2,0)$.
6) You have a circle radius a centered at $(0, a)$ and a horizontal line L sits tangent to the circle at $(0,2 a)$. You're standing at the origin and flying a kite at an angle θ from the positive x-axis, as θ goes from 0 to π. The line to the kite remains taut, and the kite remains on the line L. Let C be the kite and A the point of intersection of the kite with the circle.

Consider the point P obtained by forming a right triangle with A and C as below. Determine the coordinates of P in terms of θ and a.

